Presented @ MENU 2010, Williamsburg VA, June 1, 2010

Nucleon and Delta(1232) in chiral EFT

Presented @ MENU 2010, Williamsburg VA, June 1, 2010

Outline

1-slide introduction to chiral EFT
Compton scattering off protons, polarizabilities
Radiative pion photoproduction, Delta's MDM
Chiral expansion in the complex plane

Chiral EFT = low-energy QCD

[Weinberg (1979), Gasser & Leutwyler (1984), Gasser, Sainio & Svarc (1988), ...]

exploits the fact that the Goldstone bosons of spontaneous chiral symmetry breaking interact weakly at low energy (chi. sym. requires derivative couplings, and # of derivatives = power of momentum)

Lagrangian:
$$\mathcal{L}(\pi, N, \ldots) = \sum_{n} c_n \mathcal{O}(p^n / \Lambda_{\chi SB}^n)$$

$$S = \sum_{n} A_n(c_i) \frac{p^n}{\Lambda_{\chi SB}^n}$$

Chiral EFT = low-energy QCD

[Weinberg (1979), Gasser & Leutwyler (1984), Gasser, Sainio & Svarc (1988), ...]

exploits the fact that the Goldstone bosons of spontaneous chiral symmetry breaking interact weakly at low energy (chi. sym. requires derivative couplings, and # of derivatives = power of momentum)

$$\begin{array}{lll} \mbox{Lagrangian:} & \mathcal{L}(\pi, N, \ldots) = \sum_{n} c_n \mathcal{O}(p^n / \Lambda_{\chi SB}^n) \\ \mbox{S-matrix:} & S = \sum_{n} A_n(c_i) \, \frac{p^n}{\Lambda_{\chi SB}^n} & \begin{array}{ll} \Lambda_{\chi SB} \sim 4\pi f_\pi \approx 1 \, {\rm GeV} \\ c_n = c_n(\Lambda_{QCD}) \end{array} \end{array}$$

Chiral EFT = low-energy QCD

[Weinberg (1979), Gasser & Leutwyler (1984), Gasser, Sainio & Svarc (1988), ...]

exploits the fact that the Goldstone bosons of spontaneous chiral symmetry breaking interact weakly at low energy (chi. sym. requires derivative couplings, and # of derivatives = power of momentum)

Lagrangian:
$$\mathcal{L}(\pi, N, \ldots) = \sum_{n} c_n \mathcal{O}(p^n / \Lambda_{\chi SB}^n)$$
S-matrix: $S = \sum_{n} A_n(c_i) \frac{p^n}{\Lambda_{\chi SB}^n}$ $\Lambda_{\chi SB} \sim 4\pi f_\pi \approx 1 \, \text{GeV}$ $c_n = c_n(\Lambda_{QCD})$

Near a resonance (or a bound state):

$$S \sim \frac{1}{s - M^2} = \sum_n A_n \left(\frac{p}{\Delta E}\right)^n$$

 ΔE – excitation (binding) energy of the resonance (bound state)

Chiral EFT with $\Delta(1232)$

 $\Delta(1232)$ -first nucleon resonance, $\Delta E \equiv \Delta = M_{\Delta} - M_N \approx 300 \text{ MeV}$

E.g., Compton scattering on the nucleon

Total cross-section at NLO [V.P. & Phillips, PRC (2003)]

$$s = (p+k)^2 = M_N^2 + 2M_N \omega$$
$$S \sim \frac{1}{s - M_\Delta^2 + iM_\Delta\Gamma_\Delta}$$
$$\approx \frac{1}{2M_N} \frac{1}{\omega - \Delta + (i/2)\Gamma_\Delta}$$

 $\Gamma_{\Delta} \simeq 115 \text{ MeV} - \text{the width.}$

NNLO Compton cross sections and nucleon polarizabilities

NNLO Compton cross sections and nucleon polarizabilities

Delta-resonance as a particle with magnetic dipole moment

Quark model, large Nc

In large- N_c limit:

- $M_\Delta M_N = O(1/N_c)$
- $\pi N\Delta$ coupling, $h_A = \frac{3}{\sqrt{2}}g_A$

•
$$\gamma N\Delta$$
 coupling, $G_M = \frac{2\sqrt{2}}{3}\mu_p$, $G_E/G_M = O(1/N_c^2)$

• Magnetic moments, $\mu_{\Delta} = e_{\Delta}\mu_p$

Natural value

Relativistic pointlike charge with mass M and spin s has magnetic dipole moment

$$\mu = 2s \frac{e}{2M}$$

or, gyromagnetic ratio g=2

(GDH sum rule argument by S. Weinberg, 1972)

$$\mu_{\Delta^+} = 3 \frac{e}{2M_{\Delta}} \simeq \frac{3M_N}{2.79 M_{\Delta}} \mu_p \approx 0.82 \,\mu_p$$

Delta-resonance as a particle with magnetic dipole moment

Quark model, large Nc

In large- N_c limit:

- $M_\Delta M_N = O(1/N_c)$
- $\pi N\Delta$ coupling, $h_A = \frac{3}{\sqrt{2}}g_A$

•
$$\gamma N \Delta$$
 coupling, $G_M = \frac{2\sqrt{2}}{3} \mu_p$, $G_E/G_M = O(1/N_c^2)$

• Magnetic moments, $\mu_{\Delta} = e_{\Delta}\mu_p$

Natural value

Relativistic pointlike charge with mass M and spin s has magnetic dipole moment

$$\mu = 2s \frac{e}{2M}$$

or, gyromagnetic ratio g=2

(GDH sum rule argument by S. Weinberg, 1972)

$$\mu_{\Delta^+} = 3 \frac{e}{2M_{\Delta}} \simeq \frac{3M_N}{2.79 M_{\Delta}} \mu_p \approx 0.82 \,\mu_p$$

Natural and quark-model value - close

New lattice QCD results 1: external field method

[Aubin, Orginos, VP, Vanderhaeghen, PRD (2009)]

m_{π}	$\mu_{\Delta^{++}}$	μ_{Δ^+}	μ_{Δ^0}	$\mu_{\Omega^{-}}$
548	3.65(13)	2.60(8)	-0.07(2)	
438	3.55(14)	2.40(5)	0.02(3)	
366	3.70(12)	2.40(6)	0.001(16)	-1.93(8)
PDG:	5.6(1.9)	2.7(3.5)		-2.02(5)

Data at phys. pion mass: TAPS@MAMI Kotulla et al (2002)

> Lattice data: 2+1 flavor clover QCD

> > Band: NLO ChEFT

Data at phys. pion mass: TAPS@MAMI Kotulla et al (2002)

> Lattice data: [Alexandrou, ... Lorce, VP, Vanderhaeghen (2009)]

Band: NLO ChEFT

Data at phys. pion mass: TAPS@MAMI Kotulla et al (2002)

> Lattice data: [Alexandrou, ... Lorce, VP, Vanderhaeghen (2009)]

Band: NLO ChEFT

In present lattice calculations Delta is stable! $M_{\Delta} < M_N + m_{\pi}$

• The Delta is just within reach of chiral perturbation theory, low excitation energy: $M_{\Delta} - M_N \approx 300 \,\text{MeV}$

- The Delta is just within reach of chiral perturbation theory, low excitation energy: $M_{\Delta} M_N \approx 300 \,\text{MeV}$
- Include as a field (Rarita-Schwinger vector-spinor) into the chiral effective Lagrangian.

- The Delta is just within reach of chiral perturbation theory, low excitation energy: $M_{\Delta} M_N \approx 300 \,\text{MeV}$
- Include as a field (Rarita-Schwinger vector-spinor) into the chiral effective Lagrangian.
- Power-counting for Delta contributions (SSE, ``delta-counting")

- The Delta is just within reach of chiral perturbation theory, low excitation energy: $M_{\Delta} M_N \approx 300 \,\text{MeV}$
- Include as a field (Rarita-Schwinger vector-spinor) into the chiral effective Lagrangian.
- Power-counting for Delta contributions (SSE, ``delta-counting")
- Mass, MDM, etc., enter as parameters that need to be related to experimentally observable quantities (resonance position, width, etc.)

Radiative pion photoproduction

Machavariani, Faessler & Buchmann, NPA (1999), Erratum-ibid (2001).

Drechsel et al, PLB (2000) Drechsel & Vanderhaeghen, PRC (2001)

Chiang, Vanderhaeghen, Yang & Drechsel, PRC (2005).

V.P. & Vanderhaeghen, PRL (2005), PRD (2008)

Pilot experiment: Kotulla et al (TAPS@MAMI) PRL 2002

Calculation to NLO in the δ expansion

Dedicated experiment: Schumann et al. (CB&TAPS@MAMI-B), EPJ A 2010

By-product experiment: Prakhov et al. (CB&TAPS@MAMI-C), preliminary

Pion Electroproduction (eN->eN π) in $\Delta(1232)$ region

[V.P. & Vanderhaeghen, PRL 95 (2005); PRD 73 (2006)]

4 free parameters – LECs corresponding to G_M, G_E, G_C at Q²=0, and G_M radius. Only 2 free parameters for photoproduction!

Results for pion photoproduction

Data: Arends et al (A2 Coll.) Curves: NLO EFT

Radiative pion photoproduction: BF asymmetry

1) Backward-forward asymmetry:

Divide the Ball into F and B hemispheres, add events where outgoing pion and gamma' land in the SAME hemisphere with -, in the OPPOSITE with +. Divide by the total.

Data: Schumann et al, preliminary

Radiative pion photoproduction: BF asymmetry

1) Backward-forward asymmetry:

Divide the Ball into F and B hemispheres, add events where outgoing pion and gamma' land in the SAME hemisphere with -, in the OPPOSITE with +. Divide by the total.

Data: Schumann et al, preliminary

Chiral expansion: HBChPT vs BChPT

Chiral expansion: HBChPT vs BChPT

$$\mu = m_{\pi}/M_{N}$$

$$(\bar{\alpha} + \bar{\beta})_{n} = \frac{e^{2}g^{2}}{(4\pi)^{2}M^{3}}\frac{11}{48\mu}\left(1 + \frac{4(1+12\ln\mu)}{11\pi}\mu - \frac{117}{88}\mu^{2} + ...\right)$$

$$(\bar{\alpha} + \bar{\beta})_{p} = \frac{e^{2}g^{2}}{(4\pi)^{2}M^{3}}\frac{11}{48\mu}\left(1 + \frac{48(4+3\ln\mu)}{11\pi}\mu - \frac{1521}{88}\mu^{2} + ...\right)$$
or, numerically,

$$(\bar{\alpha} + \bar{\beta})_{n} = 14.5 - 5.5 - 0.4 + ... = 8.7$$

$$(\bar{\alpha} + \bar{\beta})_{p} = 14.5 - 5.2 - 5.5 + ... = 5.3$$
in units of 10^{-4} fm³.

$$\beta = \frac{e^{2}g^{2}_{A}}{192\pi^{3}F^{2}M_{N}}\left[\frac{\pi}{4\mu} + 18\log\mu + \frac{63}{2} - \frac{981\pi\mu}{32} - (100\log\mu + \frac{121}{6})\mu^{2} + \mathcal{O}(\mu^{3})\right]$$

Complex-energy vs complex-mass planes

 $\equiv \Pi^{(3)}(s, m_{\pi}^2)$

LO nucleon self-energy =

Dispersion in energy:

$$\Pi(s, m_{\pi}^2) = \frac{1}{2\pi i} \oint ds' \frac{\Pi(s', m_{\pi}^2)}{s' - s}$$

$$\Pi^{(n)}(s, m_{\pi}^2) = \frac{1}{\pi} \int_{M^2}^{\infty} ds' \frac{\operatorname{Im} \Pi^{(n)}(s', m_{\pi}^2)}{s' - s} \left(\frac{s - M^2}{s' - M^2}\right)^{n - 1}$$

Dispersion in $t = m_{\pi}^2 \sim m_q$:

$$\Pi(M^2, t) = \frac{1}{2\pi i} \oint dt' \frac{\Pi(M^2, t')}{t' - t}$$

$$\Pi^{(n)}(M^2, t) = \frac{1}{\pi} \int_{-\infty}^{0} dt' \frac{\operatorname{Im} \Pi^{(n)}(t')}{t' - t} \left(\frac{t}{t'}\right)^{n-1}$$

[Ledwig, V.P., Vanderhaeghen, Phys. Lett. B (2010)]

Complex-energy vs complex-mass planes

Conformal mapping and analytic continuation

Convergence of a series is limited by the cut at t=0, one can increase the radius of convergence by conformally mapping t=plane such that the cut maps onto the unit semicircle

 <u>NNLO</u> BChPT calc. of Compton scattering exhibits a potential problem in the extraction of proton polarizabilities

 <u>NNLO</u> BChPT calc. of Compton scattering exhibits a potential problem in the extraction of proton polarizabilities

Delta's MDM @ MAMI can possibly be determined using the new BF asymmetry

 <u>NNLO</u> BChPT calc. of Compton scattering exhibits a potential problem in the extraction of proton polarizabilities

Delta's MDM @ MAML can possibly be determined using the new BF asymmetry

 <u>Analytic</u> structure of pion-mass dependence (at least in ChPT) is simple, and can be used to achieve technical advantages and insight into the convergence problem.

Polarized observables (HIGS proposal)

