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1-slide introduction to chiral EFT

Compton scattering off protons, polarizabilities

Radiative pion photoproduction, Delta’s MDM

Chiral expansion in the complex plane 
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Chiral EFT = low-energy QCD  

[ Weinberg (1979), Gasser & Leutwyler (1984),
Gasser, Sainio & Svarc (1988), …]

Lagrangian:

S-matrix:

exploits the fact that the Goldstone bosons of spontaneous chiral 
symmetry breaking interact weakly at low energy (chi. sym. requires
derivative couplings, and # of derivatives = power of momentum) 
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Chiral EFT = low-energy QCD  

[ Weinberg (1979), Gasser & Leutwyler (1984),
Gasser, Sainio & Svarc (1988), …]

Lagrangian:

S-matrix:

Near a resonance (or a bound state):

exploits the fact that the Goldstone bosons of spontaneous chiral 
symmetry breaking interact weakly at low energy (chi. sym. requires
derivative couplings, and # of derivatives = power of momentum) 

Tuesday, June 1, 2010



Chiral EFT with Δ(1232)

Δ(1232) –first nucleon resonance,

E.g., Compton scattering on the nucleon

   Total cross-section at NLO
     [V.P. & Phillips, PRC (2003)]
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Compton scattering at NNLO 
[V.Lensky & V.P.,  JETP Lett (2009); EPJ C (2010)]
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NNLO Compton cross sections and nucleon polarizabilities

Data points:
MAMI/TAPS (2001)
SAL (1993)
Illinois (1991)

Curves:

Klein-Nishina

Born + WZW

+ p-qube

+ Delta
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NNLO Compton cross sections and nucleon polarizabilities

Data points:
MAMI/TAPS (2001)
SAL (1993)
Illinois (1991)

Curves:

Klein-Nishina

Born + WZW

+ p-qube

+ Delta

Problem: Cross-sections agree, 
polarizabilities do not

NNLO BChPT with Delta’s
HBChPT            [Beane et al (2005)]
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Relativistic pointlike charge with mass M
and spin s has magnetic dipole moment

or, gyromagnetic ratio g=2

(GDH sum rule argument 
by S. Weinberg, 1972) 

µ = 2s
e

2M

µ∆+ = 3
e

2M∆
� 3MN

2.79 M∆
µp ≈ 0.82 µp

Delta-resonance as a particle with 
magnetic dipole moment

Quark model, large Nc

Natural value
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Relativistic pointlike charge with mass M
and spin s has magnetic dipole moment

or, gyromagnetic ratio g=2

(GDH sum rule argument 
by S. Weinberg, 1972) 

µ = 2s
e

2M

µ∆+ = 3
e

2M∆
� 3MN

2.79 M∆
µp ≈ 0.82 µp

Delta-resonance as a particle with 
magnetic dipole moment

Quark model, large Nc

Natural value

Natural and quark-model value - close
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Data at phys. pion mass:
TAPS@MAMI Kotulla et al (2002) 

Lattice data:
2+1 flavor clover QCD

Band: NLO ChEFT

[Aubin, Orginos, VP, Vanderhaeghen, PRD (2009)]

3

simulations, corresponding to n = ±1/2,±1, and ±2 in
Eq. (3). For the Ω, we only used n = ±1/2 and n =
±1. The n = ±1/2 field does not satisfy the periodicity
constraint. We expect the errors entering here due to
this to be negligible as was shown in Ref. [8]. Even with
these fields, we already see higher-order terms appearing
in the expression for the masses extracted from two-point
functions, so larger magnetic fields will begin to introduce
effects coming from even higher-order terms in Eq. (8).
We calculate all four spin projections for the baryons, as
well as using both positive and negative magnetic fields,
and we average over all of these to reduce the errors.
Additionally, on each configuration, we calculated the
quark propagators starting from four time sources t =
0, 32, 64, and 96, using the EigCG algorithm developed
in Ref. [11] to decrease significantly the time it takes to
invert the Dirac operator.

In Fig. 1 we show the ∆++ magnetic moments in units
of the physical nuclear magneton µN , for the three pion
masses simulated. One can see noticeable effects coming
in at O(B2), and we have fit each dataset to a quadratic
form

µ = µ0 + b(ea2B)2 . (9)

With each set, since we only have two parameters and
three data points, a correlated fit is not possible, and we
do not take the fitted value of µ0 (in principle this would
be the most appropriate value, as it subtracts out the B2

dependence) and its error as our final result. Instead, we
see that for the smallest of the B-fields simulated, the
O(B2) effects are small, and so we take that data point
as our determination of the magnetic moment (in fact,
the data point at the smallest value of B is consistent,
as one can see from the Figure, with the value of µ0).
The fits performed give drastically smaller errors than
the data, and so we choose to use the error from the
data, to account for possible uncertainties in this method.
There is a slight shift (within errors) in the extracted µ0

compared with the smallest B-field data point, and for
the heavier mass this is its largest at 5%. Similar results
can be seen for the ∆+ and Ω−, and we show all of our
results in Table. II. Note that our results for the ∆− are
not included, because with this method of calculation,
we have the exact equality µ∆++ = −2µ∆−.

Also in the table, we show the experimental numbers
for these quantities. We can see that for the ∆++, there
is a possible upward trend as we decrease the pion mass.
We illustrate this in Fig. 2, where we show the present
results together with the chiral effective field theory cal-
culations of Ref. [12] for the mπ dependence of µ∆+ .
These calculations have one free parameter for µ∆+ , cor-
responding with its value in the chiral limit. We also
indicate a theoretical error band, corresponding with an
error of (mπ+mphys

π )/mphys
∆ estimating the corrections of

next chiral order, with mphys
π the physical pion mass and

mphys
∆ the physical ∆ mass. One notices a strong cusp
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FIG. 1: In this figure we show the magnetic moment in units
of the physical nuclear magneton for the three input magnetic
fields used, as well as quadratic fits to each dataset, to remove
residual B2 dependence in the magnetic moments.

TABLE II: Calculated magnetic moments in units of µN , the
physical nuclear magneton (taken as the value for the data for
the smallest B-field, as discussed in the text). For compari-
son, we have combined all experimental errors in quadrature.

mπ µ∆++ µ∆+ µ∆0 µΩ−

548 3.65(13) 2.60(8) -0.07(2)

438 3.55(14) 2.40(5) 0.02(3)

366 3.70(12) 2.40(6) 0.001(16) −1.93(8)

PDG: 5.6(1.9) 2.7(3.5) — −2.02(5)

behavior for the real part of µ∆, which is due to the open-
ing of the ∆ → πN decay channel. Therefore, no strong
conclusions on the value of µ∆ at the physical point can
be made until this extrapolation has been done. We leave
such a systematic study for a future work. On the ex-
perimental side, there are new experiments from MAMI
for the magnetic moment of the ∆+ with much reduced
errors, yet these have not yet been fully analyzed.

Since the sea quarks do not carry electric charge (which
is the case for all current lattice simulations), there is a
relationship that holds within the quark model in the
isospin limit, where µ∆++ = 2µ∆+ . Clearly this relation-
ship does not hold with our results above, but we could
use this relationship to reduce the systematic uncertain-
ties in our determination. This would clearly increase the
values obtained for the ∆++ and reduce it for the ∆+.

As for the Ω−, the strange quark mass is close to its

 New lattice QCD results 1: 
external field method
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FIG. 2: Chiral effective field theory calculations of Ref. [12]
for the mπ dependence of µ∆+ , in units of the physical nu-
clear magneton. Both real and imaginary parts of µ∆ are
displayed. For the former, the bands show a theoretical error
estimate, as described in the text. The value at the physical
pion mass corresponds with the experiment of Ref. [13], where
both statistical and systematic errors are displayed.

physical value (as we can see by the fact that the Ω− mass
is close to the observed value), so we expect the result
to match more closely to the experimental value. As we
can see, it agrees tremendously well. This agreement
is expected, as quantities involving the Ω− should have
little dependence on the light sea quark mass. On the
two B-fields we simulated for the Ω−, we see a slight B2

dependence in the magnetic moment, roughly of the same
size as for the ∆. Additionally, we see that the errors
associated with the experimental value are comparable
to the statistical lattice errors here.

In order to improve on the quoted results, we must ac-
count for the systematic errors that arise from a variety
of sources in the calculation. First there is the finite lat-
tice spacing, which is difficult to estimate given the lack
of any calculations of the magnetic moments (quenched
or dynamical) at multiple lattice spacings. Given we are
using Clover fermions, errors of O(a) disappear, so one
would expect errors to be roughly O(a2Λ2

QCD)<∼ 0.03. As
it will be some time before a second lattice spacing is
available on these configurations, we will assume there is
a 3% systematic error that arises from the finite spatial
lattice spacing.

Additionally there are errors arising from remnant fi-
nite volume effects, coming not from the background
field, but from the pion mass. These are most likely
negligible since in all cases, mπL >∼4, and thus the errors
from these effects are less than e−mπL ≈ 2%.

Finally, there are uncertainties that plague any current

calculation of the magnetic moments on the lattice, being
that the sea quark charges are set to zero. We expect
these to not be very large, coming from the discarded
diagrams in which the valence quarks in the baryons emit
photons that couple to the sea quarks. These at most are
of order α relative to the terms that are included, and
thus are expected to be at most 1%. Related errors are
those coming from the B2 extrapolation, and this is going
to be at most 5%, as mentioned below Eq. (9).

We have presented here the first (using a background
field method) dynamical results for the ∆ and Ω− mag-
netic moments on dynamical 2+1-flavor lattices, which
are consistent (given the pion mass used) with experi-
mental values that have been measured. Presently, the
accuracy obtained in the lattice result for the Ω− mag-
netic dipole moment is comparable with the experimental
accuracy. We can use the above discussion to estimate
the systematic error on our result for the Ω− magnetic
moment. We make a conservative estimate, and use the
maximum values for each source of systematic error, and
add those in quadrature, giving an error of 6%. Thus we
quote µΩ− = −1.93(8)(12)µN for our final result.

To make significant progress on these results, simula-
tions going to lighter pion masses, especially below the
∆ → πN threshold, are essential in precisely determining
the magnetic moments. Nevertheless, it is rather encour-
aging that one can obtain already such precise results
with the resources currently available.

We would like to thank NERSC and USQCD for the
computing resources used to carry out this study, as well
as the Jefferson Lab Lattice group for the anisotropic
clover lattices. This work was partially supported by
the US Department of Energy, under contract nos.
DE-AC05-06OR23177 (JSA), DE-FG02-07ER41527, and
DE-FG02-04ER41302; and by the Jeffress Memorial
Trust, grant J-813.
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 New lattice results 2: 
 3-point function method

Data at phys. pion mass:
TAPS@MAMI Kotulla et al (2002) 

Lattice data:

Band: NLO ChEFT

[Alexandrou, ... Lorce, VP, 
Vanderhaeghen (2009)]
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FIG. 2: The magnetic dipole form factor. The green (red) line
and error band show an exponential fit to the mixed action
(quenched )results.

FIG. 3: The magnetic dipole moment in nuclear magnetons.
The value at the physical pion mass (filled square) is shown
with statistical and systematic errors [1]. The solid and
dashed curves show the chiral extrapolation and theoretical
error estimate [22] .

moments of the ∆+ and ∆++ are accessible to experi-
ments [1, 2], which presently suffer from large uncertain-
ties. The magnetic moment as a function of m2

π is shown
in Fig. 3, together with a chiral extrapolation to the phys-
ical point [22], which lies within the broad error band
µ∆+ = 2.7+1.0

−1.3(stat.) ± 1.5(syst.) ± 3.0(theory)µN [1].
The ∆ moments using an approach similar to ours are cal-
culated only in the quenched approximation [17, 23, 24].
Our magnetic moment results agree with recent back-
ground field calculations using dynamical improved Wil-
son fermions [25], which supersede previous quenched
background field results [26]. The spatial length Ls of
our lattices satisfies Lsmπ > 4 in all cases except at the
lightest pion mass with NF = 2 Wilson fermions, for
which Lsmπ = 3.6. For that point, the magnetic mo-
ment falls slightly below the error band, consistent with
the fact that Ref. [25] shows that finite volume effects
decrease the magnetic moment.

The electric quadrupole form factor is particularly in-
teresting because it can be related to the shape of a
hadron, and lattice calculations for each of the three
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FIG. 4: The electric quadrupole form factor. The notation is
the same as that in Fig. 1.

actions are shown in Fig. 4 with exponential fits for
the quenched and mixed action cases. Just as the
electric form factor for a spin 1/2 nucleon can be ex-
pressed precisely as the transverse Fourier transform of
the transverse quark charge density in the infinite mo-
mentum frame [27], a proper field-theoretic interpreta-
tion of the shape of the ∆(1232) can be obtained by
considering the quark transverse charge densities in this
frame [28, 29, 30]. With respect to the direction of the
average baryon momentum P , the transverse charge den-
sity in a spin-3/2 state with transverse polarization s⊥ is
defined as :

ρ∆
T s⊥

("b) ≡

∫

d2"q⊥
(2π)2

e−i "q⊥·"b 1

2P+

×〈P+,
"q⊥
2

, s⊥ | J+(0) |P+,−
"q⊥
2

, s⊥〉, (7)

where the photon transverse momentum "q⊥ satisfies "q 2
⊥

=

Q2, J+ ≡ J0 + J3, and "b specifies the quark position in
the xy-plane relative to the ∆ center of mass. Choos-
ing the ∆ transverse spin vector along the x-axis, the
quadrupole moment of this two-dimensional charge dis-
tribution is defined as [19]:

Q∆
s⊥

≡ e

∫

d2"b (b2
x − b2

y) ρ∆
T s⊥

("b). (8)

In terms of the ∆ EM form factors [19] ,

Q∆
3
2

=
1

2
{2 [GM1(0) − 3e∆] + [GE2(0) + 3e∆]}

e

M2
∆

. (9)

The term proportional to [GM1(0) − 3e∆] is an electric
quadrupole moment induced in the moving frame due
to the magnetic dipole moment. For a spin-3/2 parti-
cle without internal structure, GM1(0) = 3e∆, GE2(0) =
−3e∆ [19, 31], and the quadrupole moment of the trans-
verse charge density vanishes. Hence Q∆

s⊥
, and thus the

deformation of the two dimensional transverse charge
density, is only sensitive to the anomalous parts of the
spin-3/2 magnetic dipole and electric quadrupole mo-
ments, and vanishes for a particle without internal struc-
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actions are shown in Fig. 4 with exponential fits for
the quenched and mixed action cases. Just as the
electric form factor for a spin 1/2 nucleon can be ex-
pressed precisely as the transverse Fourier transform of
the transverse quark charge density in the infinite mo-
mentum frame [27], a proper field-theoretic interpreta-
tion of the shape of the ∆(1232) can be obtained by
considering the quark transverse charge densities in this
frame [28, 29, 30]. With respect to the direction of the
average baryon momentum P , the transverse charge den-
sity in a spin-3/2 state with transverse polarization s⊥ is
defined as :

ρ∆
T s⊥

("b) ≡

∫

d2"q⊥
(2π)2

e−i "q⊥·"b 1

2P+

×〈P+,
"q⊥
2

, s⊥ | J+(0) |P+,−
"q⊥
2

, s⊥〉, (7)

where the photon transverse momentum "q⊥ satisfies "q 2
⊥

=

Q2, J+ ≡ J0 + J3, and "b specifies the quark position in
the xy-plane relative to the ∆ center of mass. Choos-
ing the ∆ transverse spin vector along the x-axis, the
quadrupole moment of this two-dimensional charge dis-
tribution is defined as [19]:

Q∆
s⊥

≡ e

∫

d2"b (b2
x − b2

y) ρ∆
T s⊥

("b). (8)

In terms of the ∆ EM form factors [19] ,

Q∆
3
2

=
1

2
{2 [GM1(0) − 3e∆] + [GE2(0) + 3e∆]}

e

M2
∆

. (9)

The term proportional to [GM1(0) − 3e∆] is an electric
quadrupole moment induced in the moving frame due
to the magnetic dipole moment. For a spin-3/2 parti-
cle without internal structure, GM1(0) = 3e∆, GE2(0) =
−3e∆ [19, 31], and the quadrupole moment of the trans-
verse charge density vanishes. Hence Q∆

s⊥
, and thus the

deformation of the two dimensional transverse charge
density, is only sensitive to the anomalous parts of the
spin-3/2 magnetic dipole and electric quadrupole mo-
ments, and vanishes for a particle without internal struc-

In present lattice calculations 
Delta is stable!

M∆ < MN + mπ
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Defining and determining the Delta MDM
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The Delta is just within reach of chiral perturbation theory, low 
excitation energy:

Defining and determining the Delta MDM

M∆ −MN ≈ 300 MeV
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The Delta is just within reach of chiral perturbation theory, low 
excitation energy:

Include as a field (Rarita-Schwinger vector-spinor) into the chiral 
effective Lagrangian.

Defining and determining the Delta MDM

M∆ −MN ≈ 300 MeV
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The Delta is just within reach of chiral perturbation theory, low 
excitation energy:

Include as a field (Rarita-Schwinger vector-spinor) into the chiral 
effective Lagrangian.

Power-counting for Delta contributions (SSE,  ``delta-counting”)

Defining and determining the Delta MDM

M∆ −MN ≈ 300 MeV
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The Delta is just within reach of chiral perturbation theory, low 
excitation energy:

Include as a field (Rarita-Schwinger vector-spinor) into the chiral 
effective Lagrangian.

Power-counting for Delta contributions (SSE,  ``delta-counting”)

Mass, MDM, etc., enter as parameters that need to be related to 
experimentally observable quantities (resonance position, width, 
etc.)

Defining and determining the Delta MDM

M∆ −MN ≈ 300 MeV
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  Machavariani, Faessler & Buchmann, 
  NPA (1999), Erratum-ibid (2001).

 Drechsel et al, PLB (2000) 
 Drechsel & Vanderhaeghen, PRC (2001)
 
 Chiang, Vanderhaeghen, Yang & Drechsel, 
 PRC (2005). 

Calculation to NLO in the δ expansion 
2 free LECs – µ(s) and µ(v)  

 V.P. & Vanderhaeghen, PRL (2005), PRD (2008) 

Radiative pion photoproduction

Pilot experiment: 
Kotulla et al 
(TAPS@MAMI) 
PRL 2002

By-product experiment: 
Prakhov et al. 
(CB&TAPS@MAMI-C), 
preliminary

Dedicated experiment: 
Schumann et al. 
(CB&TAPS@MAMI-B), 
EPJ A 2010
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LO

     chiral loop corrections: exact 

unitarity & e.m. gauge-invariance

[V.P. & Vanderhaeghen, PRL 95 (2005); PRD 73 (2006)]

Pion Electroproduction (eN->eNπ ) in Δ∆(1232) region

4 free parameters – LECs corresponding
to GM, GE, GC at Q2=0, and GM radius.

Only 2 free parameters for photoproduction!
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Results for pion photoproduction
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Radiative pion photoproduction: BF asymmetry
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Radiative pion photoproduction: BF asymmetry
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1) Backward-forward asymmetry:

Divide the Ball into F and B hemispheres,
add events where outgoing pion and gamma’
land in the SAME hemisphere with -, 
in the OPPOSITE with +. 
Divide by the total.

Data:  Schumann 
et al, preliminary 
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Chiral expansion: HBChPT vs BChPT 
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µ = mπ/MN

Chiral expansion: HBChPT vs BChPT 
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16

Complex-energy vs complex-mass planes

LO nucleon self-energy =

[Ledwig, V.P., Vanderhaeghen, Phys. Lett. B (2010)]

Tuesday, June 1, 2010



                                                                                     

16

Complex-energy vs complex-mass planes

LO nucleon self-energy =

IR cuts

[Ledwig, V.P., Vanderhaeghen, Phys. Lett. B (2010)]
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Conformal mapping and analytic continuation

Convergence of a series is limited by the cut at t=0, one can increase  
the radius of convergence by conformally mapping t=plane such that 

the cut maps onto the unit semicircle
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Summary
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NNLO BChPT calc. of Compton scattering 
exhibits a potential problem in the extraction of 
proton polarizabilities
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NNLO BChPT calc. of Compton scattering 
exhibits a potential problem in the extraction of 
proton polarizabilities

Delta’s MDM @ MAMI  can possibly be 
determined using the new BF asymmetry

Analytic  structure of pion-mass dependence (at 
least in ChPT) is simple, and can be used to 
achieve technical advantages and insight into 
the convergence problem. 

Summary
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α(p)

β(p)

Polarized observables (HIGS proposal)

19

Born + WZW

LEX

BChPT
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